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Abstract: The CO2 absorption rate by using a Monoethanolamide (MEA) solution through the spiral
wired channel in concentric circular membrane contactors under both concurrent-flow and countercurrent-
flow operations was investigated experimentally and theoretically. The one-dimensional mathematical
modeling equation developed for predicting the absorption rate and concentration distributions was
solved numerically using the fourth Runge–Kutta method under various absorbent flow rate, CO2 feed
flow rate and inlet CO2 concentration in the gas feed. An economical viewpoint of the spiral wired
module was examined by assessing both absorption flux improvement and power consumption increment.
Meanwhile, the correlated average Sherwood number to predict the mass-transfer coefficient of the CO2

absorption mechanisms in a concentric circular membrane contactor with the spiral wired annulus channel
is also obtained in a generalized and simplified expression. The theoretical predictions of absorption flux
improvement were validated by experimental results in good agreements. The amine solution flowing
through the annulus of a concentric circular tube, which was inserted in a tight-fitting spiral wire in a
small annular spacing, could enhance the CO2 absorption flux improvement due to reduction of the
concentration polarization effect. A larger concentration polarization coefficient (CPC) was achieved in the
countercurrent-flow operations than that in concurrent-flow operations for various operations conditions
and spiral-wire pitches. The absorption flux improvement for inserting spiral wire in the concentric circular
module could provide the maximum relative increment up to 46.45%.

Keywords: spiral wired annulus channel; carbon dioxide absorption; sherwood number; concentric-
tube membrane contactor; concentration polarization

1. Introduction

The accelerated industrial movement development during the last few decades results
in increasing flue gases from fossil fuel combustion containing CO2 in greenhouse gas emis-
sion, which speeded the environmental concerns [1] in global warming issues. Meanwhile,
the biogas is processed and conditioned by removing impurities such as CO2 (30–45%)
and H2S (0.5–1%) to upgrade its value and satisfy pipeline transport specifications. CO2
capture using several technologies, namely absorption [2], adsorption [3], and membrane
processes [4] of which the membrane contactor is a promising alternative technology with
high absorption efficiency due to offering the advantages of low energy consumption, the
independent control of gas and absorbent flow rates, a large mass-transfer area, continuous
operations, and the flexibility to scale up [5]. Either physical or chemical absorption is
the most common purification technology for gas separation for all these applications,
especially for combining both chemical absorption and the separation technique [6] to
allow the soluble gas mixture components to be selectively absorbed on the membrane
surface of the liquid phase in liquid/liquid and gas/liquid systems [7,8].
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Successful intensifications of gas/liquid membrane contactors have been developed
and employed providing the guideline to the judicious choice of membrane materials [9]
and absorbents for CO2 absorption processes [10,11]. Previous studies proved some durable
and reusable materials used for the membrane contactor of CO2 absorption, where the
as-prepared hydrophobic polymethylsilsesquioxane (PMSQ) aerogels [12], and hybrid
bis(trimethoxysilyl)hexane (BTMSH)/tetraethyl orthosilicate (TEOS) silica aerogels [13]
and highly porous polyvinylidene fluoride (PVDF) [14] were used as a membrane contac-
tor indicating a decrease in the mass-transfer resistance for CO2 absorption performance.
Moreover, the separation efficiency of membrane gas absorption depends on the distribu-
tion coefficient and a composition gradient of gas solute in the gas/liquid system [15]. A
gas/liquid interface was formed in the pore entrance near the microporous hydrophobic
membrane surface of the shell side when the membrane pores are not wetted [16]. It is
crucial to develop an effective strategy to capture CO2 with the minimum cost [17]. Nu-
merous absorbents in hollow fiber membrane contactors [18,19] were conducted with the
lower membrane wettability like amine solution and the properties of absorbents [20] for
CO2 absorption improvement were further investigated. Karror and Sirkaras [21] investi-
gated a series of comprehensive experiments of gas/liquid absorption in a shell and tube
membrane contactors when considering a laminar flow velocity of liquid profile, while
Bakhshali et al. [22] employed computational fluid dynamics to show the high efficient
removal efficiency of CO2 in turbulent flow conditions. Knudsen-molecular diffusion
transition models [23], as referred to the dusty gas model, were widely used to describe the
mass-transfer behaviors across membranes, and were successfully applied to express the
absorption flux performance [24,25].

Membrane separation processes are still facing the problems of the concentration
polarization effect despite major advances in developing membrane contactors on gas
absorption. The concentration polarization effect building up concentration gradients can
be the cause of a considerable reduction in mass-transfer rate [26], which accumulates the
retained species and depletes the permeate component in the mass-transfer boundary layer
adjacent to the membrane surface, and thus the separation efficiency and permeate flux
were decreased [27]. Proposing a prospective strategy [28] included breaking down the
laminar sublayer in a turbulent boundary layer region adjacent to the membrane surface
by embedding spiral wires into the flowing channel. Hosseinzadeh et al. [29] investi-
gated how absorption efficiency in a parallel-plate gas/liquid polytetrafluoroethylene
(PTFE) membrane contactor was augmented by inserting turbulent promoters. The present
work focuses on the overall mass-transfer resistance in which the potential investigation
of different spiral-wire pitches boost turbulent intensity due to dynamical changing the
mass-transfer boundary layer and mitigating concentration polarization. The concentration
polarization effect in membrane separation processes plays a vital role in diminishing
trans-membrane mass flux in the majority of membrane separation processes, such as gas
absorption [30], reverse osmosis [31], extraction [32], pervaporation [33] and dialysis [34].
Various approaches provided a remarkable advantage to minimize the concentration polar-
ization effect for achieving higher mass-transfer rates using eddy promoters [35], such as
net spacer channels [36] and carbon-fiber spacer channels [37], where the turbulent inten-
sity enhancement is effectively raised to come out with a higher convective mass-transfer
coefficient [38].

The present study develops the mathematical modeling of CO2 absorption by using
an MEA solution flowing in the lumen of spiral wired concentric-tube module to generate
vortices, while the gas mixture CO2/N2 flows in the tube side. The characteristics of CO2
absorption in the MEA solution was investigated in the previous research [39], and the
performance improvement of a rotated wired concentric-tube channel was validated for
enrichment of heavy water [40]. Theoretical and computational studies were performed
for comparisons under various operating conditions to model the CO2 absorption process
associated with occurring reactions [41] by using amines and mixed amines [42], and to
enhance CO2 capture efficiency and reduce regeneration cost [43]. The objective of this
study is to implement the spiral wires and stick them onto the membrane surface of the
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flow channel to enhance the local shear stress on the membrane surface and to create
secondary flows or eddies in the feed stream, and thus achieve a higher CO2 absorption
rate. In the present study, the device performance was further improved by inserting
various spiral-wire pitches along the flow channel. The helical wire on the circumference of
the concentric-tube provided a larger convective mass-transfer coefficient, which disrupted
the boundary layer to reduce the mass-transfer resistance, where a higher CO2 absorption
rate was thus observed. The turbulence intensity induced by embedding spiral wires in the
MEA absorbent flow channel was examined by incorporating and regressing a correlated
expression of the convective mass-transfer coefficient for the spiral wired concentric-tube
membrane contactor. The effects of spiral-wire pitch, MEA feed concentration, and gas and
liquid feed flow rates on the absorption flux of CO2 were evaluated once the simplified
expression was obtained. The trade-off between the CO2 absorption flux improvement
and energy consumption increment was analyzed in finding the economic assessment in
module designs and system operations, and hence the application of the inserting helical
wires in the flow channel to design membrane gas absorption modules is technically and
economically feasible. Therefore, the absorption mechanisms were studied in the one-
dimensional steady-state modeling equation of the mass-balance and chemical reaction,
which was developed and simulated theoretically and carried out experimentally on a
spiral wired concentric circular module with the use of the PTFE membrane.

2. Theoretical Formulation
2.1. Mass Transfer

A concentric circular membrane contactor without/with embedding spiral wires onto
the lumen side was fabricated to conduct the experimental work in aiming to enhance the
CO2 absorption rate by using amine solution, as shown in Figure 1, respectively, while
Figure 2 shows schematic representations of both concurrent- and countercurrent-flow
operations. Two spiral-wire pitches (2 mm and 3 mm) were embedded into flow channels
in comparisons of the device performance with a spiral wired annulus channel and empty
channel (without embedding spiral wires).
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Figure 1. Empty and spiral wired annulus channels of concentric circular membrane contactors. 
(a) Empty channel; (b) Spiral wired channel. 

Figure 1. Empty and spiral wired annulus channels of concentric circular membrane
contactors. (a) Empty channel; (b) Spiral wired channel.
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Figure 3. Schematic concentration profiles and boundary layers of a spiral wired annulus channel. 

Figure 2. Spiral wired concentric circular membrane contactors. (a) Concurrent-flow operations;
(b) Countercurrent-flow operations.

Mathematical modeling equations were formulated considering both diffusion and
chemical reactions to calculate the CO2 absorption rate in the concentric circular membrane
contactor module. The mass diffusion occurs in the inner side of the concentric tube and
reaches the porous membrane’s mouth, while the reaction takes place on the membrane
surface in the shell side of the amine solution, as schematically illustrated in Figure 3.
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The isothermal diffusion-reaction process in the membrane contactor module generates
the trans-membrane mass flux of CO2 which depends on the concentration difference across
the membrane, resulting in CO2 absorption flux. The mass-transfer rate is controlled by the
concentration boundary layers on both bulk streams, the properties of the membrane and
the operating conditions. The theoretical analysis of CO2 absorption by using MEA was
developed with the following assumptions:

(a) The system is operated at steady-state and normal pressure conditions;
(b) The porous hydrophobic membrane is not wetted by the MEA solution;
(c) The membrane material does not react with the MEA solution;
(d) Henry’s law applies to the interface between the gas phase and the liquid phase.

Mass-transfer resistances in series were connected and built up across the mem-
brane adjacent to two bulk streams, including the CO2 transferring to the membrane
surface, generating trans-membrane flux by Knudsen diffusion and molecular diffusion,
and reaching the membrane–liquid interface to be reacted by the MEA absorbent, as with
the mass-transfer resistances and CO2 concentration variations illustrated in Figure 4. The
mass-transfer rate depends only on convective mass-transfer coefficients when neglecting
the bottleneck of reaction rate, and the CO2 concentration on the membrane–liquid interface
was determined by the dimensionless Henry’s law constant Hc = 0.73 [39].
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The mass diffusion between both gas and liquid bulk streams and membrane sur-
faces, respectively, of CO2 was transported by the concentration driving-force gradient, as
depicted below:

ωa = ka(Ca − C1) (1)

ωb = kb

(
K′exC2(l)

Hc
−

Cb(l)
Hc

)
(2)
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Application of dusty gas model [23] to the mass transfer in the membrane was consid-
ered [44], and the mass flux of CO2 was evaluated using a membrane permeation coefficient
(cm) and the trans-membrane saturation partial pressure differences (∆P) [45] as

ωm = cm(P1 − P2)
1

Mw
= cm

dP
dC

∣∣∣
Cmean

(C1 − C2(g))
1

Mw

= cmRT(C1 −
K′exC2(l)

Hc
) 1

Mw
= Km(C1 −

K′exC2(l)
Hc

)
(3)

in which, Km is the overall mass-transfer coefficient of membrane, and the reduced equilib-
rium constant at T = 298K [46] and the membrane permeation coefficient [47] with the
tortuosity τ = 1/ε [48] were determined as

K′ex = Kex[MEA]/[H+],Kex = [MEACOO−] [H+]/[CO 2][MEA] = 1.25× 10−5 (4)

cm =

(
1
cK

+
1

cM

)−1
=


[

1.064
ε rp

τδm

(
Mw

RTm

)1/2
]−1

+

[
1
|Ym|ln

Dmε

δmτ

Mw

RTm

]−1

−1

(5)

Equating the amount of mass flux in three regions transferred through the gas feed
side, the membrane porous and liquid feed side was made by the conservation law as

ωi = ωa = ωm = ωb i = spiral, empty (6)

2.2. Concentration Polarization

The concentration polarization was controlled by the gas and liquid boundary layers
in term of the concentration polarization coefficient γm. The value of the concentration
polarization coefficient γm is the extent to measuring the magnitude of mass-transfer
resistances in the CO2/MEA absorption module. A higher value of γm represents the
absorption process with a smaller mass-transfer resistance. The undesirable influence on
the mass-transfer rate was overwhelmed by disrupting the boundary layers, and thus, the
absorption flux improvement with mass-transfer resistance reduction is achieved. The
one-dimensional mathematical treatments were developed under steady-state operations
according to the conservation of mass flux, such as in Equation (6) and as illustrated by the
schematic diagram in Figure 4. Both membrane surface concentrations (C1 and C2(l)) and
the convective heat-transfer coefficients (kb) were obtained by equating Equations (1) and
(3) (ωm = ωa) and Equations (2) and (3) (ωm = ωb), respectively, as follows:

Ca = C1 +
km

ka

(
C1 −

K′exC2(l)
Hc

)
(7)

Cb(l)
Hc

=
K′exC2(l)

Hc
− km

kb

(
C1 −

K′exC2(l)
Hc

)
(8)

An expression of the concentration polarization coefficient γm was obtained by sub-
tracting Equation (7) from Equation (8)

γm =

(
C1 −

K′exC2(l)
Hc

)
(

Ca −
Cb(l)

Hc

) =
kakb

kakb + kmka + kmkb
(9)

The calculation procedure of theoretical predictions of the mass-transfer coefficient
was described as follows. First, with the given operation conditions, the mass-transfer
coefficient is determined from Equations (7) and (8). Next, with the given inlet and outlet
concentrations (Ca and Cb) of both CO2/N2 gas and MEA feed streams, initial values of
the concentrations on both sides of membrane surfaces C1 (or C2(l)) are estimated from
Equation (7) once C2(l) (or C1) is assumed in Equation (8). Further, the mass-transfer
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coefficient of the membrane is calculated from Equation (3). With this calculated value
for the mass-transfer coefficient of the membrane, new values of C1 and C2(l) are then
recalculated by iterations of Equations (7) and (8) until convergence with an acceptable
error of accuracy control. If the calculated values of C1 and C2(l) deviated from the initial
value, iterative calculation is continued until the last assumed values of membrane surface
concentrations meet the finally calculated values.

The inner tube and lumen side of the CO2/MEA membrane absorption module were
flowing the CO2/N2 gas feed and MEA liquid feed, respectively, as shown in Figure 3.
The modeling equations of mass balances of the gas feed and liquid feed streams were
derived by making the mass flux diagram presented in a finite control element under
concurrent-flow and countercurrent-flow operations in Figure 2a,b, respectively, giving:

dCa

dz
=
−2π ri

qa

[
Km

(
C1 −

K′exC2(l)
Hc

)]
=
−2πri

qa

[
Kmγm

(
Ca −

Cb(l)
Hc

)]
(10)

dCb
dz =

−kCO2 Cb(l)π(r2
o−r2

i )

qb
+ 2π ri

qb

[
Km

(
C1 −

K′exC2(l)
Hc

)]
=
−kCO2 Cb(l)π(r2

o−r2
i )

qb
+ 2π ri

qb

[
Kmγm

(
Ca −

Cb(l)
Hc

)] (11)

dCb
dz =

kCO2 Cb(l)π(r2
o−r2

i )

qb
− 2π ri

qb

[
Km

(
C1 −

K′exC2(l)
Hc

)]
=

kCO2 Cb(l)π(r2
o−r2

i )

qb
− 2π ri

qb

[
Kmγm

(
Ca −

Cb(l)
Hc

)] (12)

Equations (10) and (11) (or Equations (10) and (12)) express the mass balances derived
for CO2 absorption in MEA absorbent under the concurrent-flow and countercurrent-flow
operations, respectively, while z is the coordinate along with the axial flowing direction. The
simultaneous ordinary equations of Equations (10) and (11) (or Equations (10) and (12)) were
solved using the fourth-order Runge-Kutta method along the module’s length to determine
marching solutions of the CO2 concentrations in both CO2/N2 and MEA feed streams, and
hence, the CO2 absorption flux and absorption flux improvement were obtained.

2.3. Mass-Transfer Nhancement Factor

The spiral wired annulus channel in the concentric circular module was implemented
in the MEA feed stream instead of using the device of an empty channel. The extent of
mass-transfer rate enhancement was lumped into an enhancement factor [38], which is the
ratio of the mass-transfer rate improvement of the spiral wired module to that of the device
using an empty channel. The mass-transfer enhancement factor αS depending on inserting
spiral wires of various pitches was correlated to calculate the augmented mass-transfer
coefficients in membrane contactors as follows:

ShS =
kbdh ,spriral

Db
= αSShlam (13)

For the concentric circular membrane contactor using empty channels under laminar
flow, the commonly used correlation [49] is:

Shlam = 0.023 Re0.8Sc0.33 (14)

The Sherwood number of inserting spiral wires into flow channels can be incorporated
into four dimensionless groups using Buckingham’s π theorem:

ShS = f

(
Lspiral

dh,empty
, Re, Sc

)
(15)
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where Lspiral and dh,empty are the equivalent length of inserting spiral wires and the hy-
draulic diameters of the empty channels, respectively. The enhancement factor αS was
derived from the correlation via a regression analysis for Sherwood number in the device
with spiral wired annulus channel as

αS = 0.125 ln

(
Lspiral

dh, empty

)1.504

=
ShS

Shlam
(16)

in which the correlated Sherwood numbers for the device with an empty channel are in
linear uniformity with the experimental data, as referred to in Equation (14).

2.4. Absorption Flux Improvement

The absorption flux improvement Ispiral was illustrated by calculating the percentage
increase in the device with inserting spiral wires, based on the device of an empty channel as

Icon
spiral(%) =

ωcon
spiral −ωcon

empty

ωcon
empty

× 100 (17)

Icounter
spiral (%) =

ωcounter
spiral −ωcon

empty

ωcon
empty

× 100 (18)

Icounter
empty (%) =

ωcounter
empty −ωcon

empty

ωcon
empty

× 100 (19)

where Icounter
empty , Icon

spiral and Icounter
spiral are the absorption flux improvement for countercurrent-

flow operations with empty channel, and concurrent- and countercurrent-flow operations
with spiral-wired channel, respectively. Meanwhile, the subscripts spiral and empty repre-
sent the channels with/without inserting spiral wires, respectively, and the superscripts
con and counter represent concurrent- and countercurrent- flow operations, respectively.

The further CO2 absorption flux enhancement Espiral in CO2 absorption flux by insert-
ing spiral wires in the flow channel is calculated based on the device of the same working
dimensions as in the device under countercurrent-flow operations using the device of an
empty channel as follows:

Espiral =
ωcounter

spiral −ωcounter
empty

ωcounter
empty

= [
(ωcounter

spiral −ωcon
empty)−(ωcounter

empty −ωcon
empty)

ωcon
empty

](ωcon
empty/ωcounter

empty )

= (Icounter
spiral − Icounter

empty )(ωcon
empty/ωcounter

empty ) =
Icounter
spiral −Icounter

empty

1+Icounter
empty

(20)

2.5. Power Consumption Increment

The increment in energy consumption was unavoidable due to the increased frictional
loss by employing a spiral wired annulus channel in the concentric-tube membrane contac-
tor module. The power consumption includes the involvements from both the gas side and
the MEA side, which can be determined using Fanning friction factor fF for both laminar
and turbulent flows [50]:

Hi = qa ρCO 2lw f ,CO 2 + qb ρMEAlw f ,MEA i = spiral, empty (21)

lw f ,j =
2 fF,jv2

j L

dh,i
, j = CO2, MEA (22)

The average velocity and equivalent hydraulic diameter of each flow channel were
calculated as follows:

νCO2 =
qa

πr2
i

, νMEA =
qb

Wp(ro − ri)
(23)
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dh,CO2 = 2 ri, dh,MEA =
4[Wp(ro − ri)]

2[Wp + (ro − ri)]
(24)

The relative extents IP of power consumption increment was illustrated by calculating
the percentage increment in the device while inserting spiral wires, based on the device of
the empty channel as

Ip =
Hspiral − Hempty

Hempty
× 100% (25)

where the subscripts of the spiral and empty channel represent the flow channels with and
without inserting spiral wires, respectively.

2.6. The Design of Spiral Wired Annulus Channel

An attempt was proposed in the last two decades to augment turbulence intensity by
implementing eddy promoters into the flow channel, resulting in better device performance
of membrane separation processes, which destroy the concentration boundary layers on
the membrane surface and come out with economic sense in terms of operation efficiency.
The spiral wired annulus channel presents the advantage of reduction of concentration
polarization inside the boundary layers on the membrane surface due to the productions
of the turbulent behavior in enhancing a larger convective heat-transfer coefficient. Two
spiral-wire pitches in the flowing channel and empty channel (without inserting spiral
wire) were conducted in the experimental work, as shown in Figure 5, respectively.
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Figure 5. Components of concentric circular membrane contactors for the empty channel and two
spiral-wire pitches of spiral wired annulus channel. (a) Empty channel; (b) 2 cm spiral-wire pitch;
(c) 3 cm spiral-wire pitch; (d) Membrane tube with 2 cm and 3 cm spiral-wire pitches.
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The detailed parts of the concentric circular membrane contactor module while in-
serting spiral wires in the flow channel are presented in Figure 5. The dimensions of
the spiral-wire pitches are specified in Figure 5 for the spiral-wire pitches of 2 cm and
3 cm, respectively. The empty channel (without embedding spiral wire) is constructed by
inserting an effectively 0.2 m long concentric tubular acrylic ring tube of outer diameter
1.53 cm. The acrylic helical wires were made by poly-methyl methacrylate (PMMA), and
its stability testing was observed with no degradation during operating experimental runs.
The inner acrylic tube was perforated up to 70% porosity by punching small circle holes of
2 mm diameter, which was wound by the hydrophobic PTFE membrane (Advantec, Japan)
with a nominal pore size of 0.2 µm, a porosity of 0.72, and a thickness of 130 µm, to allow
the gas diffusion through the membrane. The spiral wired annulus channel embedded
helical wire is made of a 2 mm × 2 mm cross-sectional area acting as eddy promoters with
spiral wire pitches of 2 cm and 3 cm, respectively, while the empty channel was wound
and routed with a 0.2 mm nylon fiber on the circumference of the membrane surface on the
outside of the inner tube.

3. Experimental Study

A schematic diagram of the experimental setup of the concentric circular gas–liquid
membrane contactor for CO2 absorption by MEA absorbent was presented as illustrated in
Figure 6. The spiral wired concentric circular modules under concurrent- and countercurrent-
flow operations while inserting spiral wires into the lumen side along the acrylic ring tube
are illustrated in Figures 2 and 5. Figure 6a,b illustrate the schematic representations of the
concentric circular membrane contactor module with a spiral wired annulus channel, where
the MEA solution is passing through the shell side and the gas feed is flowing through the
tube side.

The aqueous MEA solution was regulated by a flow meter (MB15GH-4-1, Fong-Jei,
New Taipei, Taiwan) as the liquid flowing through the lumen side from a reservoir. The
experimental runs were carried out 30 wt% MEA (5.0× 103 mol/m3) for various feed
flow rates within the range of 5~10 cm3/s (5.0, 6.67, 8.33, 10.0 cm3/s). A gas mixture
containing CO2/N2 introduced from the gas mixing tank (EW-06065-02, Cole Parmer
Company, Illinois, USA) was regulated by using the mass flow controller (N12031501PC-
540, Protec, Brooks Instrument, USA) at 5 cm3/s with three inlet CO2 concentrations of 30%,
35%, and 40%, respectively. The CO2 concentrations exiting in the outlet gas stream of the
various operating conditions were tested and measured for comparisons by using the gas
chromatography (Model HY 3000 Chromatograph, China Corporation).
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Figure 6. Experimental setup of spiral wired annulus channel in concentric-tube membrane module;
(A) chromatograph; (B) beaker; (C) temperature indicator; (D) spiral wired concentric module; (E)
flow meter; (F) mass flow controller; (G) thermostatic tank; (H) gas cylinder. (a) Concurrent-flow
operations; (b) Countercurrent-flow operations.

The accuracy deviation [51] of the experimental results from the theoretical predictions
was calculated using the following definition as:

Er (%) =
1

Nexp

Nexp

∑
i=1

∣∣ωtheo,i −ωexp,i
∣∣

ωexp,i
× 100 (26)

where Nexp ωtheo,i and ωexp,i are the number of experimental runs, theoretical predictions,
and experimental results of absorption fluxes, respectively. The accuracy deviations with
two flow patterns with a 2 mm spiral-wire pitch are shown in Table 1 as an illustration.
The agreement of experimental results deviated from theoretical predictions is quite good
within 1.28× 10−2 ≤ Er ≤ 3.33× 10−2.
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Table 1. The accuracy deviation between theoretical predictions and experimental results.

Cinqb×106

(%) m3/s
Concurrent Flow Countercurrent Flow

ωcon
exp ×
103

ωcon
theo ×
103 Er(% )

ωcounter
exp ×

103
ωcounter

theo ×
103 Er(% )

30

5.0 5.23 5.31 1.53 5.35 5.45 1.83
6.67 5.83 5.92 1.51 5.92 6.05 2.14
8.33 6.21 6.37 2.50 6.33 6.51 2.78
10.0 6.63 6.53 2.08 6.46 6.65 1.60

40

5.0 5.58 5.70 2.10 5.76 5.87 1.87
6.67 6.31 6.40 1.41 6.47 6.61 2.12
8.33 6.98 7.22 3.33 7.27 7.37 1.28
10.0 7.19 7.39 2.75 7.36 7.54 2.29

45

5.0 6.21 6.35 2.22 6.30 6.42 1.88
6.67 6.79 6.99 2.86 7.05 7.20 2.06
8.33 7.70 7.94 3.02 7.95 8.12 2.05
10.0 7.96 8.15 2.40 8.05 8.30 3.03

4. Results and Discussions
4.1. Correlated Sherwood Numbers

One may apply the Runge-Kutta numerical scheme in a marching solution procedure
of Equations (10) and (11) to obtain the CO2 concentrations’ distributions in the CO2/MEA
bulk streams, as well as the CO2 absorption flux for concurrent-flow operations, while the
iterative calculation of Equations (10) and (12) can be done by a shooting strategy for the
countercurrent-flow operations whilst assuming the initial guess of CO2 concentration at
the inlet of the MEA feed stream. Comparisons were made for the CO2 absorption flux of
modules using the spiral wired annulus channel and empty channel under both concurrent-
and countercurrent-flow operations.

The mass-transfer coefficients were determined by the theoretical model and expressed
in terms of Sherwood number in comparison with the experimental data, as shown in
Figure 7. The correlated Sherwood numbers, as shown in Figure 7, indicate that the mass-
transfer rate of the device with a spiral wired annulus channel of 2 cm spiral-wire pitch
achieves a higher mass-transfer coefficient than that of the device of a 3 cm spiral-wire pitch
and empty channel as well. The impact of embedding spiral wires on the mass-transfer
rate enhancement is attributed to the disruption of the concentration boundary layer, and
thus, the CO2 absorption flux was augmented due to the mass-transfer resistance reduction.
Restated, a narrower pitch of the spiral wired annulus channel induces a higher turbulence
intensity that results in a larger mass-transfer rate on absorption fluxes.
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4.2. Effects of Device Parameters and Operating Conditions on Concentration Polarization

The concentration polarization coefficients γm defined in Equation (9) are an indicator
of the magnitude of the mass-transfer resistance, governed by the concentration boundary
layer in both gas and liquid feed streams, especially in the MEA feed side. The concentration
polarization effect in the module with empty channel was examined on the value of
the concentration polarization coefficient γm as an illustration, which was demonstrated
in Figure 8 along the channel direction for various MEA feed flow rates and inlet feed
CO2 concentration.
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The concentration polarization coefficients γm were determined with various MEA
feed flow rates and inlet feed CO2 concentrations as parameters once the predicted CO2
concentration distributions were obtained. The theoretical predictions of the concentration
polarization coefficients γm show that the value of γm increases with increasing the MEA
feed flow rates but with decreasing inlet feed CO2 concentrations. The higher the inlet
CO2 feed concentration, a larger concentration gradient of CO2 on the membrane surface
was produced, and hence a smaller γm was found in Figure 8. The higher inlet feed CO2
concentration creates a more significant concentration polarization effect on the membrane
surface. The larger inlet feed CO2 concentration does not accomplish a higher τtemp value,
which means the mass-transfer rate decreases when the inlet feed CO2 concentration is
raised. This is because the higher inlet feed CO2 concentration does not reduce the mass-
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transfer resistance built up in the concentration boundary layer on the membrane surface
in the MEA bulk flow. Therefore, the increased CO2 concentration caused by the higher
inlet feed CO2 concentration cannot accordingly be quickly diffused to the membrane
surface. Moreover, the concentration polarization coefficients γm increase along the MEA
flowing direction in concurrent-flow operations, but decrease in the reverse z direction of
countercurrent-flow operations. Similar influences of MEA feed flow rates and inlet feed
CO2 concentrations on concentration polarization coefficients γm were confirmed in both
countercurrent-flow and countercurrent-flow operations from Figure 8.

The concentration polarization coefficients γm is an indicator to measure the magni-
tude of the mass-transfer resistance, which is attributed to the higher feed flow rate and
the larger turbulence intensity created by operating a spiral wired annulus channel. The
absorption flux improvement was enhanced by implementing the spiral wired annulus
channel in examining the value of the concentration polarization coefficient γm. The main
contribution to diminishing the concentration polarization in the boundary layer on the
membrane surface was accomplished by the effects of turbulent flow due to a higher MEA
feed flow rate, and an eddy promotion owing to inserting spiral wires. The theoretical
predictions of the concentration polarization coefficient γm in operating the modules with
inserting spiral-wire pitches of 3 cm and 2 cm under the inlet feed CO2 concentrations
of 30% and 40%, respectively, were calculated in comparison to that of the module with
the empty channel under both concurrent- and countercurrent-flow operations, as shown
in Figure 9.
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The turbulence intensity promotion by inserting spiral wires in both concurrent- and
countercurrent-flow operations aimed to shrink concentration polarization layers and
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diminish the mass-transfer resistance as well, whereby the absorption flux is enhanced.
The results show that the value of γm for the 2 cm pitch of the spiral wired channel is
larger than those of the 3 cm pitch of the spiral wired channel, as well as the module
with an empty channel, which means the operating 2 cm pitch of the spiral wired channel
resulted in a lesser mass-transfer resistance for CO2 absorption. Restated, inserting spiral
wires in the flow channel is a positive influence on the eddy promotion, and the smaller
spiral-wire pitch generates a higher convective mass-transfer coefficient, which comes out
with a higher γm value and a higher absorption flux.

4.3. CO2 Absorption Flux Enhancement by Embedding Spiral Wires

This study has shown that the CO2 absorption flux for the module with embedding
spiral-wire pitches of 2 cm and 3 cm in both concurrent- and countercurrent-flow opera-
tions, as shown in Figures 10 and 11 including both experimental results and theoretical
predictions, respectively.
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Figure 10. Effects of MEA flow rate and inlet CO2 feed concentration on CO2 absorption flux. (a) 
Concurrent-flow operations; (b) Countercurrent-flow operations. 
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Figure 11. Effects of MEA flow rate and spiral-wire pitch on CO2 absorption flux. (a) Concurrent-
flow operations; (b) Countercurrent-flow operations. 
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In general, the CO2 absorption flux by embedding spiral wires is more noteworthy in
countercurrent-flow operations than that in concurrent-flow operations. A larger concen-
tration gradient achieved between gas and liquid in countercurrent-flow operations with
respect to concurrent-flow operations results in a higher device performance on absorption
flux. As expected, either the increase of both MEA feed flow rate and inlet feed CO2
concentration or the decrease of the spiral-wire pitch yields a higher absorption flux.

The theoretical predictions of the CO2 absorption flux improvement Ispiral for various
MEA feed flow rates, inlet feed CO2 concentrations and spiral-wire pitches under concurrent-
and countercurrent-flow operations are summarized in Table 2; Table 3, respectively.

Table 2. Effects of spiral-wire pitches on absorption flux improvements.

Cinqb×106

(%) (m3 s−1)

Concurrent-Flow Operations (mol m−2 s−1)
Empty

Channel 2 cm Spiral Wire 3 cm Spiral Wire

ωcon
theo ×
103 ωcon

theo× 103 Icon
spiral (%) ωcon

theo ×
103 Icon

spiral (%)

30

5.0 3.93 5.31 35.18 4.77 21.61
6.67 4.46 5.92 32.84 5.30 18.89
8.33 4.90 6.37 30.06 5.67 15.78
10.0 5.07 6.53 28.80 5.87 15.71

35

5.0 4.08 5.70 39.87 5.11 25.41
6.67 4.68 6.40 36.76 5.79 23.62
8.33 5.42 7.22 33.09 6.59 21.43
10.0 5.62 7.39 31.60 6.77 20.42

40

5.0 4.34 6.35 46.45 5.66 30.35
6.67 5.01 6.99 39.42 6.33 26.22
8.33 5.82 7.94 36.31 7.26 24.74
10.0 6.10 8.15 33.71 7.49 22.87
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Table 3. Effects of spiral-wire pitches on absorption flux improvements.

Cinqb×106

(%) (m3 s−1)

Countercurrent-Flow Operations (mol m−2 s−1)
Empty

Channel 2 cm Spiral Wire 3 cm Spiral Wire

ωcounter
theo ×

103
ωcounter

theo ×
103 Icounter

spiral (%) ωcounter
theo ×

103 Icounter
spiral (%)

30

5.0 4.12 5.45 38.68 4.92 25.19
6.67 4.67 6.05 35.65 5.43 21.75
8.33 5.15 6.51 32.86 5.79 18.16
10.0 5.28 6.65 31.16 5.92 16.77

35

5.0 4.38 5.87 43.87 5.27 29.17
6.67 5.15 6.61 41.24 6.00 28.21
8.33 5.86 7.37 35.98 6.76 23.06
10.0 6.06 7.54 34.16 6.95 21.57

40

5.0 4.71 6.42 47.93 5.81 33.87
6.67 5.55 7.20 43.71 6.55 30.74
8.33 6.40 8.12 39.52 7.48 28.52
10.0 6.70 8.30 36.07 7.65 25.41

A relative increment of absorption flux improvement Ispiral was calculated in com-
parison of the absorption flux in the module with spiral wired annulus channels to that
of the empty channel in concurrent-flow operations. It is also seen from tables 2 and 3
that the order of the CO2 absorption flux and CO2 absorption flux improvement for the
module embedding spiral wires is 2 cm pitch > 3 cm pitch and countercurrent-flow opera-
tions > concurrent-flow operations. The results show that the maximum absorption flux
improvement up to 47.93% is obtained as compared to that in the empty channel device.
Overall, the CO2 absorption flux augmented by inserting spiral wires is more substantial in
countercurrent-flow operations than that in concurrent-flow operations. Inserting spiral
wires into flow channel demonstrates a great potential to improve significantly the absorp-
tion flux, and then, the absorption flux improvement in gas/liquid membrane contactors
as well.

4.4. Further CO2 Absorption Flux Enhancement

The further absorption flux enhancement is accomplished if there are various spiral-
wire pitches that are embedded into MEA feed stream for increasing the convective mass-
transfer coefficient, which results in the turbulence intensity increment. A maximum 47.93%
absorption flux improvement is achieved with spiral wired channel rather than the same
device of empty channel for 2mm spiral-wire pitch and countercurrent-flow operations
for instance, as seen in Table 4. Moreover, the further absorption flux enhancement of the
module with spiral wired channel increases with increasing inlet feed CO2 concentration
but decreasing with the spiral-wire pitches and MEA feed flow rate.
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Table 4. Theoretical predictions of absorption flux improvements and further absorption
flux.enhancement with inserting spiral wires.

Cinqb×106

(%) m3/s

Countercurrent-Flow Operations
Empty

Channel 2 cm Spiral Wire 3 cm Spiral Wire

Icounter
empty (%) Espiral(%) Icounter

spiral (%) Espiral(%) Icounter
spiral (%)

30

5.0 4.85 32.27 38.68 20.24 25.19
6.67 4.71 29.27 35.65 16.27 21.75
8.33 5.10 26.41 32.86 12.43 18.16
10.0 4.14 25.95 31.16 12.13 16.77

35

5.0 7.35 34.01 43.87 20.33 29.17
6.67 10.04 28.35 41.24 16.51 28.21
8.33 8.19 25.69 35.98 13.75 23.06
10.0 7.83 24.42 34.16 12.74 21.57

40

5.0 8.53 36.30 47.93 24.07 33.87
6.67 10.78 29.73 43.71 19.61 30.74
8.33 9.97 26.87 39.52 16.87 28.52
10.0 9.84 23.88 36.07 14.18 25.41

4.5. Power Consumption Increment

Inserting spiral wires acting as turbulence promoters confronts two conflict effects
of the desirable absorption flux improvement and the undesirable power consumption
increment, which exists an indicator of economic viewpoint in making the suitable selection.
Concerning the compensation of the CO2 absorption flux improvement due to friction losses
increased by inserting spiral wires in the MEA feed channel, the effects of spiral-wire pitches
and MEA flow rates on the ratio IE/IP of CO2 absorption flux improvement to power
consumption increment are shown in Figure 12. The higher the inlet feed CO2 concentration
and the smaller spiral-wire pitch give the higher IE/IP value. Restated, the percentage
increment of absorption flux improvement is higher than the percentage increment of
energy consumption. The increase of the MEA feed flow rate yields a lower ratio of IE/IP
and reaches an insignificant change for MEA feed flow rate being larger than 8.33× 10−6

m3/s. One found that the effectiveness of inserting 3 mm spiral-wire pitch are all higher
than that of 2 mm spiral-wire pitch under the same operation type. The comparison
reveals that though a higher absorption flux improvement associated with a higher power
consumption increment, and thus, the ratio of IE/IP is not absolute going larger, which
implies that increase of the CO2 absorption flux cannot compensate the increase of power
consumption by increasing the MEA feed rate. In other words, the countercurrent-flow
operation can utilize energy efficiency to increase CO2 absorption flux more effectively
than that in the concurrent-flow operation regarding to the economic consideration.
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5. Conclusions

Promoting turbulence intensity in a concentric circular gas-liquid PTFE membrane
contactor for CO2 absorption was designed by embedding spiral wires into the concentric
annulus channel, and the mathematical modeling was developed theoretically and vali-
dated experimentally. The results has demonstrated its technical and economic feasibility
in terms of the ratio of IE/IP and obtaining up to 47.93% absorption flux enhancement by
implementing spiral wired annulus channel. The value of this study are twofold:

(1) to propose a new device of inserting spiral wires including the desirable effect in
raising the turbulence intensity by an alternative strategy on the CO2 absorption in MEA
absorbent through concentric circular membrane contactor;

(2) to present graphically the concentration polarization coefficient and CO2 absorption
flux with MEA feed flow rates, inlet feed CO2 concentrations and spiral-wire pitches as
parameters under both concurrent- and countercurrent-flow operations.

Furthermore, an expression of Sherwood number was obtained to correlate the mass-
transfer coefficient of the gas/liquid membrane contactor module with embedding spiral
wired annulus channel.
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Abbreviations

C Concentration (mol m−3)
Cmean Mean value of C (mol m−3)
ck Membrane coefficient based on the Knudsen diffusion model (mol m−2 Pa−1 s−1)
cM Membrane coefficient based on the molecular diffusion model (kg m−2 Pa−1 s−1)
cm Membrane permeation coefficient (mol m−2 Pa−1 s−1)
Db Diffusion coefficient of CO2 in MEA (m2 s−1)
dh,i Equivalent hydraulic diameter of channel (m), i = spiral, empty
Er Accuracy deviation of experimental results from the theoretical predictions
E absorption flux enhancement
fF Fanning friction factor
HC Dimensionless Henry’s constant
Hi Hydraulic dissipate energy (J kg−1), i = spiral, empty
IE Absorption flux enhancement
IP Power consumption relative index
ωi Molar flux (mol m−2 s−1)
ka Mass-transfer coefficient in the gas feed stream (m s−1)
kb Mass-transfer coefficient in the liquid absorbent side (m s−1)
Kex Equilibrium constant
K′ex Reduced equilibrium constant
Km Overall mass-transfer coefficient of membrane (m s−1)
lw f ,j Friction loss (J kg−1), j = CO2, MEA
L Channel length (m)
Lspiral Length of spiral wired channel (m)
MW Average molecular weight of CO2 and N2 gas mixture (kg mol−1)
Nexp Number of experimental measurements
P1 Saturation vapor pressure in the gas feed flow side (Pa)
P2 Saturation vapor pressure in the liquid absorbent flow side (Pa)
qa Volumetric flow rate of the gas feed stream (m3 s−1)
qb Volumetric flow rate of the MEA absorbent side (m3 s−1)
R Gas constant (8.314 J mol−1 K−1)
Re Reynolds number
ri Radius of inner tube (m)
ro Radius of shell (m)
rp Membrane pore radius (m)
Sc Dimensionless Schmidt number
ShS Enhanced dimensionless Sherwood number
Shlam Dimensionless Sherwood number for laminar flow
Wp Pitch width (m)
ω Absorption flux (mol m−2 s−1)
|Ym|ln Natural log mean CO2 mole fraction in the membrane
z Axial coordinate along the flow direction (m)
Greek letters
αS Mass-transfer enhancement factor
β Aspect ratio of the channel
δm Thickness of membrane (µm)
ε Membrane porosity
ν Average velocity (m s−1)
ρi Density (kg m−3), i = CO2, MEA
γm Concentration polarization coefficients
Subscripts
1 Membrane surface on MEA side
2(l) Liquid phase on membrane surface on MEA side
2 ( g) Gas phase on membrane surface on MEA side
a The gas feed flow channel
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b The liquid absorbent flow channel
cal Calculated results
spiral Inserting spiral wires as promoters
empty Empty channel
exp Experimental results
in Inlet
out Outlet
theo Theoretical predictions
Superscripts
con Concurrent-flow operations
counter Countercurrent-flow operations
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